Advanced Sleep Phase Syndrome (ASPS)

From supermemo.guru
Jump to: navigation, search

This text is part of: "Science of sleep" by Piotr Wozniak (2017)

Problems with phase advance

Advanced Sleep Phase Syndrome (ASPS) is the opposite of DSPS. People suffering from ASPS get very sleepy early in the evening and wake up very early in the night. Their circadian clock runs at less than 24 hour period or get easily reset in the morning (e.g. by stress). ASPS people constantly struggle to survive awake to a reasonable evening hour, sleep less, wake up early, and experience increased tiredness during the day.

Genes and lifestyle in ASPS

ASPS often runs in families and is then called familial ASPS or FASPS. Some mutations that may cause ASPS are listed in this table.

While a typical DSPS person is an adolescent student, a typical ASPS person is a retiree or a middle-aged woman with low stress tolerance. The link between the age and sleep phase disorders may be related to aging itself, however, it may also be a result of lifestyle changes that come with age.

Remarkably, while I have received dozens of SleepChart submissions showing a free running DSPS pattern, I had to actively seek submissions that would illustrate ASPS. This alone can serve as an illustration of personality and lifestyle differences between the two groups. It is the DSPS group that keeps surfing the net till the early morning hours in search for a solution to their sleep problem. In the end, they often arrive at super-memory.com, download SleepChart, and begin logging their sleep in an effort to understand their own sleep patterns. The ASPS group is usually in bed early and often not refreshed enough during the day to seek a solution on the web. I have not received even a single reverse ASPS pattern with sleep starting progressively earlier in the day!

Example 1: ASPS and substance abuse

A stabilized ASPS sleep pattern of a postmenopausal unemployed female with a lifelong history of substance abuse, currently in a period of abstention and recovery

The presented SleepChart log illustrates a stabilized ASPS sleep pattern of a postmenopausal unemployed female with a lifelong history of substance abuse, currently in a period of abstention and recovery. Without medication, the subject struggles to stay up past 5 pm. She often wakes up at 1-3 am and finds it impossible to fall back asleep. She reports a perpetual tiredness. The only solution to her sleep problems seems to be sleeping pills regularly prescribed by her GP and/or psychiatrist(s). Those pills have also been a part of a vicious cycle of addiction to benzodiazepines and alcohol.

Superficially, the log seems to look like a picture of a perfectly healthy sleep. However, the entire schedule and the sleep phase are kept in check with a cocktail of psychoactive drugs. The main difference between this ASPS case and a similarly-looking perfect sleep case is the said persistent tiredness throughout the day. The subject reports that her chief preoccupation is to "somehow get through the day" when combating tiredness, and struggling with an ever present threat of a fallback into addiction.

The difference in sleep length on individual days (8-9 hours on good days, 0-3 hours on bad days) comes from the fact that the subject sleeps at different family locations on different days. Some of those are considered better (resulting in better sleep), others are considered more stressful. One of the nights was sleepless due to family stress. This illustrates again how lifestyle determines sleep patterns.

Sleep maintained with drugs always yields fractional cognitive benefits. In this case though, the effect is truly dramatic with cognitive performance comparable with that encountered in a state of severe intoxication. The drugs schedule, which changes periodically for various reasons, is invariably composed of pick me ups in the morning, and put me downs in the evening, as well as some "extras" for controlling various neural side effects of the "sleep control cocktail". Individual drugs interfere with each other producing a constellation of side effects that result in a horrendous chaos in the system, and long-term consequences that in turn result in an inevitable spiral towards a psychiatric decline and dramatically reduced well-being, ability to function in society, and longevity. The half-life of opposing drugs results in their effects cancelling each other and producing unpredictable resultant consequences. Why is then this pharmacological horror tolerated? For an unemployed individual with a history of substance abuse, for his or her family, and for the doctors involved, anything that resembles normality today takes precedence over the long term consequences. Naturally, for nearly everyone involved, this zombified status quo is preferred to actual intoxication even though that both are bound to destroy the brain in the long run. EEG findings indicate long-term and largely irreversible changes in the function of the central nervous system caused by substance abuse and/or psychoactive medication.

As with all medical intervention in general, psychiatry is particularly troubled with tunnel vision that fails to see the big picture of individual's life and population health in general. New drugs pop up too fast to effectively study their long-term consequences. They are subject to prescription fashions that wax and wane. As barbiturates gave way to benzodiazepines, and benzodiazepines to Prozac, a well-meaning psychiatrist is often confused by a welter of contradictory data, never-ending lists of contradictory side-effects and the scourge of scientific observation: guaranteed false data coming from patients who always have multiple reasons for lying to their doctor. Making all patient history records near-to useless. Patients often change doctors to suit their dream prescription, or seek parallel advice and contradictory prescription from different sources. They rarely stick to the drug timing and dosage.

For the record, at the moment of writing, the drug array in use in the presented example was:

  • antidepressant venlafaxine that is able to lengthen the period of the circadian cycle (8 am, half-life 10 hours)
  • antipsychotic aripiprazole (8 am, half-life 75 hours)
  • anxiolytic benzodiazapine lorazepam (6 pm, 2.5 mg, half-life 15 hours): in use for years instead of the recommended weeks, despite various side effects including severe sleep apnea; possibly the prescribing physician was not aware of the fact
  • antipsychotic olanzapine (8 pm, 20 mg)
  • in addition: anticonvulsant lamotrigine (50 mg)

As of the moment of writing, I was not able to ascertain if these have been prescribed by a single psychiatrist and if the prescribing physician(s) had an insight into the patient's full medical history.

Example 2: Overmedication and daytime drowsiness

The second example shows another severely medicated case. 56-year-old male retiree carries on on an equally potent cocktail of drugs. In this case, poorly-planned irregular free running sleep helps reveal the degree of daytime sleepiness with sleep episodes initiated regularly starting with the 3rd hour of wakefulness, short and early forbidden zone in the hours 7-9, and preference for short waking day of 12-18 hours:

A 56-year-old male retiree carrying on on a potent cocktail of drugs

Perhaps due to the impact of the sedatives, the length of sleep episodes may reach an equivalent of a full night's sleep at practically any time of the day. Needless to say, the subject is hardly able to function cognitively and complains of never-ending tiredness. The drugs used in this case: